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INTRODUCTION

It is well known that there is an in®nite number of
possible deformation paths that can bring a volume of
rock from one con®guration to another. If the defor-
mation is homogeneous, one of these paths is steady
state (Passchier, 1990). All of these paths are, by de®-
nition, `equal-strain paths' because they all start with
the same initial con®guration and end up with the
same ®nal con®guration. Di�erent paths, however, dif-
fer in their e�ciency of accumulating ®nite strain
(McKenzie, 1979; Means et al., 1980; P®�ner and
Ramsay, 1982). Although a deformation path can be
described kinematically, what actually govern a volume
of rock to follow certain path(s) are dynamic laws (see
Jiang and White, 1995, for some discussion).
By de®ning a very unusual `o�set' and setting the

deformation to achieve it, Fossen and Tiko� (1997)
argued for the `minimum strain path', and suggested
that certain natural deformations might follow such
paths. This discussion attempts to demonstrate that
the minimum strain path arises solely from mathemat-
ical manipulation. Depending on the kinematic quan-
tity one wishes to prescribe, there are an in®nite
number of possible `minimum strain paths'. None of
them correspond to the real physical process of natural
deformation.
Because Fossen and Tiko�'s (1997) argument is

based on their use of a very unusual `o�set', I ®rst dis-
cuss di�erent measures of shear zone displacement.

MEASURE OF DISPLACEMENT ACROSS A
SHEAR ZONE

The `o�set' de®ned by Fossen and Tiko� (1997,
p. 989 and their ®g. 2) is very unusual. It is the shear-
zone-parallel component of the displacement of the
material particle initially at the `upper, right-hand cor-
ner'. Figure 1 compares their `o�set' (U) with the com-

monly used measure of a shear zone displacement (d)
as indicated by the displaced `dykes' initially perpen-

dicular to the shear zone. U di�ers from d unless the

deformation path is a simple shear (Fig. 1). Although

U = 2 for all situations in ®g. 2 of Fossen and Tiko�

(1997), the d-values are di�erent: d = 2 for the simple

shear case (®g. 2a), d = 0 for the pure shear case

(®g. 2b) and d11.4 for the sub-simple shear case

(Wk=0.82, ®g. 2c).

U and d can be easily related by considering the dis-

placement ®eld of the deformation.

An arbitrary material particle initially at position

P(X, Y) is transformed to a new position p(x, y) by de-

formation (Fig. 1). The displacement is:

u � xÿ X; v � yÿ Y; �1�
where u and v are the displacement components along

the horizontal and vertical axes, respectively (Fig. 1).

For the deformation relevant here, (x, y) and (X, Y)

are related by a position gradient tensor of the form:

x

y

� �
� a

0

d
aÿ1

� �
X

Y

� �
; �2�

where a is the stretch parallel to the shear zone.

Combining (1) and (2) gives:

u � �aÿ 1�X � dY; v � �aÿ1 ÿ 1�Y : �3�
Considering a shear zone of unit thickness in the unde-

formed state (this means U and d are quantities nor-

malized against the initial thickness of the shear zone)

without losing any generality, the particle initially at

`the upper, right-hand corner' has an initial position:

(X, Y) = (1, 1) (Fig. 1). Using (3), the relationship

between U and d is:

U � �aÿ 1� � d: �4�
Although very unusual, U is a valid measure of shear

zone displacement. In addition to d and U, a third poss-

ible measure of the shear zone displacement is the shear
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strain on the shear zone boundary g (= ad), which is the
actual shear zone displacement normalized against the
shear zone thickness in the deformed state. In fact, so
long as it is a mathematically positive and monotoni-
cally-increasing function of d, or both d and a, any
quantity can be regarded as some measure of the shear
zone displacement. But it is important to realize that the
displacement measures (d, g, U or others) are not only
functions of time but also functions of the path.

AN INFINITE NUMBER OF `MINIMUM STRAIN
PATHS'

Figure 2 plots the ®nite strain state (Rf=l1/21 /l1/22 )
for di�erent paths against di�erent displacements
[Fig. 2a: Rf=Rf(Wk, d), Fig. 2b: Rf=Rf(Wk, g) and
Fig. 2c: Rf=Rf(Wk, U)]. From each Rf±displacement
relationship, one can calculate the `minimum strain
path'. The steady-state minimum strain paths* for d, g
and U are plotted in Fig. 3. For prescribed d of any
value, the minimum strain path is a simple shear. For
prescribed shear strain g of values: 0, 1, 2, 3, 4, 5 and
8, the minimum strain paths are, respectively, Wk=1,
0.94, 0.85, 0.81, 0.79, 0.77 and 0.75. For prescribed U
of values of 0, 2, 5 and 8, the minimum strain paths
are, respectively, Wk=0.89, 0.82, 0.74 and 0.72
(Fossen and Tiko�, 1997, p. 990).
One can potentially set any other kinematic quan-

tities as prescribed, and solve for the minimum strain
paths to achieve them. The paths are di�erent depend-

ing on the quantity prescribed as shown in Fig. 3.
Therefore there exists an in®nite number of di�erent
`minimum strain paths'; it would make no sense to
speak of the minimum strain path unless the pre-
scribed kinematic quantity is speci®ed.

Another point to make here is that one must be
careful when reading plots like Fig. 2. In Fig. 2, Rf is
plotted for di�erent paths (di�erent curves) against
displacements which are themselves path dependent, as
pointed out earlier. This drawback obscures the physi-
cal signi®cance of the curves, and could make the plot
misleading. For example, the fact that the curves for
sub-simple shear paths are below the curves for the
simple shear path in Fig. 2(c) (and ®g. 3 of Fossen and
Tiko�, 1997) could easily mislead one to think that
sub-simple shear will accumulate ®nite strain more
slowly than does simple shear. `Slowly' refers to time-
rate only, but the horizontal axes of the curves are
`displacements' which are dependent on path also.

CONCLUSIONS

A minimum strain path arises only when a kin-
ematic quantity is prescribed and the deformation is
set to achieve it. There are an in®nite number of pos-
sible minimum strain paths, depending on the quantity
prescribed. A volume of rock certainly does not know
which one to follow. Being an energetic process, natu-
ral deformation of rocks is expected to follow paths
that are both feasible kinetically and most `economic'
energetically (the principle of least action) (cf. Goods
and Brown, 1979). The comparison between the mini-
mum work path and the `minimum strain path'
(Fossen and Tiko�, 1997) is inadequate, because the
former is concerned with the dynamics of a defor-

Fig. 1. The di�erence between the `o�set' (U) used by Fossen and Tiko� (1997) and the commonly used measure
of shear zone displacement (d). The shear zone deformation transforms an arbitrary material particle from P(X, Y) to

p(x, y). The displacement P±p has a horizontal component U and a vertical component V. See text for details.

*By making the shear strain increment in®nitesimal, the non-
steady-state minimum strain path can be constructed. This is not
done here, because it is already su�cient to make the point with the
steady-state minimum strain path.
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mation whereas the latter arises from a purely geo-
metric curiosity. It is impossible for an energetic pro-
cess to follow a path that is determined purely
kinematically.
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Fig. 2. Plot of the ®nite strain ratio (Rf=l1/21 /l1/22 ) for di�erent defor-
mation paths against di�erent displacements. (a) Rf±d plot, (b) Rf±g

plot, and (c) Rf±U plot. See text for details.

Fig. 3. Di�erent steady-state minimum strain paths arise when di�er-
ent kinematic quantities are prescribed. See text for details.
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