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INTRODUCTION

It is well known that there is an infinite number of
possible deformation paths that can bring a volume of
rock from one configuration to another. If the defor-
mation is homogeneous, one of these paths is steady
state (Passchier, 1990). All of these paths are, by defi-
nition, ‘equal-strain paths’ because they all start with
the same initial configuration and end up with the
same final configuration. Different paths, however, dif-
fer in their efficiency of accumulating finite strain
(McKenzie, 1979; Means et al., 1980; Pfiffner and
Ramsay, 1982). Although a deformation path can be
described kinematically, what actually govern a volume
of rock to follow certain path(s) are dynamic laws (see
Jiang and White, 1995, for some discussion).

By defining a very unusual ‘offset’ and setting the
deformation to achieve it, Fossen and Tikoff (1997)
argued for the ‘minimum strain path’, and suggested
that certain natural deformations might follow such
paths. This discussion attempts to demonstrate that
the minimum strain path arises solely from mathemat-
ical manipulation. Depending on the kinematic quan-
tity one wishes to prescribe, there are an infinite
number of possible ‘minimum strain paths’. None of
them correspond to the real physical process of natural
deformation.

Because Fossen and Tikoff’s (1997) argument is
based on their use of a very unusual ‘offset’, I first dis-
cuss different measures of shear zone displacement.

MEASURE OF DISPLACEMENT ACROSS A
SHEAR ZONE

The ‘offset’” defined by Fossen and Tikoff (1997,
p- 989 and their fig. 2) is very unusual. It is the shear-
zone-parallel component of the displacement of the
material particle initially at the ‘upper, right-hand cor-
ner’. Figure 1 compares their ‘offset’ (U) with the com-

monly used measure of a shear zone displacement (J)
as indicated by the displaced ‘dykes’ initially perpen-
dicular to the shear zone. U differs from ¢ unless the
deformation path is a simple shear (Fig. 1). Although
U = 2 for all situations in fig. 2 of Fossen and Tikoff
(1997), the o-values are different: 6 = 2 for the simple
shear case (fig. 2a), 6 = 0 for the pure shear case
(fig. 2b) and 6~ 1.4 for the sub-simple shear case
(W =0.82, fig. 2c).

U and ¢ can be casily related by considering the dis-
placement field of the deformation.

An arbitrary material particle initially at position
P(X, Y) is transformed to a new position p(x, y) by de-
formation (Fig. 1). The displacement is:

v=y-—Y, (1)

where u# and v are the displacement components along
the horizontal and vertical axes, respectively (Fig. 1).
For the deformation relevant here, (x, y) and (X, Y)
are related by a position gradient tensor of the form:

C) B (Z a(:) (i) )

where a is the stretch parallel to the shear zone.
Combining (1) and (2) gives:

u=x-—2X,

u=(@—-DX+3Y, v=(@'-1Y. (3)

Considering a shear zone of unit thickness in the unde-
formed state (this means U and J are quantities nor-
malized against the initial thickness of the shear zone)
without losing any generality, the particle initially at
‘the upper, right-hand corner’ has an initial position:
(X, Y)=(1, 1) (Fig. 1). Using (3), the relationship
between U and 9 is:

U=(a—1)+9. “)
Although very unusual, U is a valid measure of shear

zone displacement. In addition to § and U, a third poss-
ible measure of the shear zone displacement is the shear
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Fig. 1. The difference between the ‘offset’ (U) used by Fossen and Tikoff (1997) and the commonly used measure
of shear zone displacement (J). The shear zone deformation transforms an arbitrary material particle from P(X, Y) to
p(x, y). The displacement P—p has a horizontal component U and a vertical component V. See text for details.

strain on the shear zone boundary y (= ad), which is the
actual shear zone displacement normalized against the
shear zone thickness in the deformed state. In fact, so
long as it is a mathematically positive and monotoni-
cally-increasing function of 9§, or both ¢ and a, any
quantity can be regarded as some measure of the shear
zone displacement. But it is important to realize that the
displacement measures (J, y, U or others) are not only
functions of time but also functions of the path.

AN INFINITE NUMBER OF ‘MINIMUM STRAIN
PATHS’

Figure 2 plots the finite strain state (Ry=A}">/13?)
for different paths against different displacements
[Fig. 2a: Ry=R{( W, 9), Fig. 2b: Ry=R{ W), y) and
Fig. 2¢: Re=R{ Wy, U)]. From each R—displacement
relationship, one can calculate the ‘minimum strain
path’. The steady-state minimum strain paths* for 9, vy
and U are plotted in Fig. 3. For prescribed ¢ of any
value, the minimum strain path is a simple shear. For
prescribed shear strain y of values: 0, 1, 2, 3, 4, 5 and
8, the minimum strain paths are, respectively, W =1,
0.94, 0.85, 0.81, 0.79, 0.77 and 0.75. For prescribed U
of values of 0, 2, 5 and 8, the minimum strain paths
are, respectively, Wy, =0.89, 0.82, 0.74 and 0.72
(Fossen and Tikoff, 1997, p. 990).

One can potentially set any other kinematic quan-
tities as prescribed, and solve for the minimum strain
paths to achieve them. The paths are different depend-

*By making the shear strain increment infinitesimal, the non-
steady-state minimum strain path can be constructed. This is not
done here, because it is already sufficient to make the point with the
steady-state minimum strain path.

ing on the quantity prescribed as shown in Fig. 3.
Therefore there exists an infinite number of different
‘minimum strain paths’; it would make no sense to
speak of the minimum strain path unless the pre-
scribed kinematic quantity is specified.

Another point to make here is that one must be
careful when reading plots like Fig. 2. In Fig. 2, Ry is
plotted for different paths (different curves) against
displacements which are themselves path dependent, as
pointed out earlier. This drawback obscures the physi-
cal significance of the curves, and could make the plot
misleading. For example, the fact that the curves for
sub-simple shear paths are below the curves for the
simple shear path in Fig. 2(c) (and fig. 3 of Fossen and
Tikoff, 1997) could easily mislead one to think that
sub-simple shear will accumulate finite strain more
slowly than does simple shear. ‘Slowly’ refers to time-
rate only, but the horizontal axes of the curves are
‘displacements’ which are dependent on path also.

CONCLUSIONS

A minimum strain path arises only when a kin-
ematic quantity is prescribed and the deformation is
set to achieve it. There are an infinite number of pos-
sible minimum strain paths, depending on the quantity
prescribed. A volume of rock certainly does not know
which one to follow. Being an energetic process, natu-
ral deformation of rocks is expected to follow paths
that are both feasible kinetically and most ‘economic’
energetically (the principle of least action) (cf. Goods
and Brown, 1979). The comparison between the mini-
mum work path and the ‘minimum strain path’
(Fossen and Tikoff, 1997) is inadequate, because the
former is concerned with the dynamics of a defor-
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Fig. 2. Plot of the finite strain ratio (Rf=/1{"2/).£"2) for different defor-
mation paths against different displacements. (a) R—d plot, (b) Ry—y
plot, and (c) Rp—U plot. See text for details.
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Fig. 3. Different steady-state minimum strain paths arise when differ-
ent kinematic quantities are prescribed. See text for details.

mation whereas the latter arises from a purely geo-
metric curiosity. It is impossible for an energetic pro-
cess to follow a path that is determined purely
kinematically.
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